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Problem Statement

Supervisory Control Theory relies on access to models of plant and specifications to calculate
supervisors.
Obtaining plant models is usually a bottleneck:

Manually constructing them is hard, time-consuming, and error-prone.
Manual construction of models is potentially intractable for large and complex systems.
Once constructed, these models, need to be maintained to reflect the behavior of the real system.

Ashfaq Farooqui MIDES CASE 2021 3 / 26



Active Learning
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MIDES: Model Inference for Discrete Event Systems1

A opensource tool for automatic learning of models and supervisors for discrete event systems using
active learning.

Aims
Ability to prototype and test multiple learning algorithms quickly.
Easy to interface a variety of external simulation tools.
Generic output that can be used with existing tools within the supervisory context.

1https://github.com/ashfaqfarooqui/MIDES
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MIDES: Model Inference for Discrete Event Systems
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MIDES: Model Inference for Discrete Event Systems

Algorithms
L* a

SupL* b

Modular Plant Learner c

Modular Supervisor Learner d

aAngluin, Dana. “Learning regular sets from queries and counterexamples.” Information and computation
75.2 (1987): 87-106.

bFarooqui, Ashfaq, Ramon Claase, Martin Fabian, “On Plant-Free Active Learning of Supervisors”
Submitted IEEE-TASE

cFarooqui, Ashfaq, Fredrik Hagebring, and Martin Fabian. “Active learning of modular plant models.”
IFAC-PapersOnLine 53.4 (2020): 296-302.

dHagebring, Fredrik, Ashfaq Farooqui, and Martin Fabian. “Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning.” IFAC-PapersOnLine 53.4 (2020): 324-330.
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MIDES: Model Inference for Discrete Event Systems

Simulation Interfaces
Internal simulator using variables, predicates, and actions.
Interface to MATAB engine to simulate MATLAB functions.
OPC-UA based interface for PLC systems.
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Machine Buffer Machine
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Simulation
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Example learning from PLC

Learning Experior MBM
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Learning outcome
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Figure: The maximally permissive controllable and non-blocking learnt supervisor

Farooqui, Ashfaq, Ramon Claase, Martin Fabian, “On Plant-Free Active Learning of Supervisors” Submitted
IEEE-TASE

Farooqui, Ashfaq, and Martin Fabian. “Synthesis of supervisors for unknown plant models using active learning.”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE, 2019.
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The Cat and Mouse example
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Using the internal simulator

override val guards: Map[Command, Predicate] = Map(
c1 -> EQ(cat, R0),
c2 -> EQ(cat, R1),
c3 -> EQ(cat, R2),
c4 -> EQ(cat, R0),
c5 -> EQ(cat, R3),
c6 -> EQ(cat, R4),
c7 -> OR(EQ(cat, R1), EQ(cat, R3)),
m1 -> EQ(mouse, R0),
m2 -> EQ(mouse, R2),
m3 -> EQ(mouse, R1),
m4 -> EQ(mouse, R0),
m5 -> EQ(mouse, R4),
m6 -> EQ(mouse, R3)

)
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Using the internal simulator

override val actions: Map[Command, List[Action]] = Map(
c1 -> List(Assign(cat, R1)),
c2 -> List(Assign(cat, R2)),
c3 -> List(Assign(cat, R0)),
c4 -> List(Assign(cat, R3)),
c5 -> List(Assign(cat, R4)),
c6 -> List(Assign(cat, R0)),
c7 -> List(ToggleWithValues(cat, (R1, R3))),
m1 -> List(Assign(mouse, R2)),
m2 -> List(Assign(mouse, R1)),
m3 -> List(Assign(mouse, R0)),
m4 -> List(Assign(mouse, R4)),
m5 -> List(Assign(mouse, R3)),
m6 -> List(Assign(mouse, R0))

)
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Cat and Mouse example

Σ
K1

= {c1, c3, c4, c6,m1,m3,m4,m6},
ΣK1 = {c1, c2, c7,m2,m3},
ΣK2 = {c2, c3,m1,m2},
ΣK3 = {c4, c5, c7,m5,m6},
ΣK4 = {c5, c6,m4,m5},
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Cat and Mouse example

room 1 (MK1)

StateMap(States(cat=R4), Specs(room1=r1e))

StateMap(States(cat=R1), Specs(room1=r1c))

StateMap(States(cat=R4), Specs(room1=r1m))

StateMap(States(cat=R0), Specs(room1=r1e))

StateMap(States(cat=R2), Specs(room1=r1m))

INIT: StateMap(States(cat=R2), Specs(room1=r1e))

StateMap(States(cat=R3), Specs(room1=r1e))

StateMap(States(cat=R0), Specs(room1=r1m))

StateMap(States(cat=R3), Specs(room1=r1m)), cost=1.7976931348623157E308
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Cat and Mouse example

room 3 (MK3)

StateMap(States(cat=R4), Specs(room3=r3e))

StateMap(States(cat=R1), Specs(room3=r3e))

StateMap(States(cat=R4), Specs(room3=r3m))

StateMap(States(cat=R0), Specs(room3=r3e))

StateMap(States(cat=R1), Specs(room3=r3m)), cost=1.7976931348623157E308

INIT: StateMap(States(cat=R2), Specs(room3=r3e))

StateMap(States(cat=R2), Specs(room3=r3m))

StateMap(States(cat=R0), Specs(room3=r3m))

StateMap(States(cat=R3), Specs(room3=r3c))
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Cat and Mouse example

Mouse

StateMap(States(mouse=R2))

StateMap(States(mouse=R0))

StateMap(States(mouse=R3))

INIT: StateMap(States(mouse=R4))

StateMap(States(mouse=R1))

m2

m3m5

m1

m6

m4

The resulting supervisors (and plants) can then be used in existing tools to generate a maximally
permissive controllable and non-blocking supervisor.

Hagebring, Fredrik, Ashfaq Farooqui, and Martin Fabian. “Modular Supervisory Synthesis for Unknown Plant Models
Using Active Learning.” IFAC-PapersOnLine 53.4 (2020): 324-330.

Farooqui, Ashfaq, Fredrik Hagebring, and Martin Fabian. “Active learning of modular plant models.”
IFAC-PapersOnLine 53.4 (2020): 296-302.
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The LSM
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Learning models of MATLAB code2

function duringStateA(self,
laneChangeRequest)

var1 = function1();
var2 = function2(laneChangeRequest);
if var1 && var2

self.state = stateB;
end

end

2Selvaraj, Yuvaraj, et al. “Automatically learning formal models: an industrial case from autonomous driving
development.” Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. 2020.
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System Under Learning
LSM

LSM is programmed in MATLAB
Inputs from other sub-components are abstracted
Functionality to run and observe LSM by the learner is
introduced
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Ashfaq Farooqui MIDES CASE 2021 22 / 26



Learning Setup
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The interface provides a standard API to run and observe the SUL
Provide information to the learner to interpret the observed information
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Outcome

MPL manages to learn a model that was validated with good confidence
The obtained model was simulated alongside the original code to check correctness

SA
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SD SE
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SF

Figure: A meta-level finite-state abstraction of the LSM
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Figure: Language Minimised model
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Conclusions and Future Steps

MIDES, a tool for automatically learning supervisors in the absence of traditional plant models.
Support for interfacing external simulation environment, eg, MATLAB, OPC-UA.

Future steps
Improving algorithmic performance using better data-structures.
Support for richer formalisms – Extended Finite Automata, Register Automata, Etc
Automata simulators

Ashfaq Farooqui MIDES CASE 2021 25 / 26



Thank You!
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