Active Learning of Modular Plant Models

Ashfaq Farooqui, Fredrik Hagebring and Martin Fabian

Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden

15th IFAC Workshop On Discrete Event Systems, 2020 November 2020

A D > A D >

1 Introduction

2 Modular learning

B Learning a modular plant

4 Limitations

6 Conclusions

(Chalmers University of Technology)

イロト イヨト イヨト イヨ

- Model based methods are being embraced within the industry.
- Tools that help with model based design are easily available.
- Bottleneck: Where do we get the models from?
- Manually building models is a challenge, time consuming, and prone to errors.
- Building models of legacy systems requires reverse engineering skills.
- If there already exists a system (simulation or physical), can we extract the behavioral model automatically?

Models

By model we mean the discrete behavior of the system represented by one or more deterministic automata.

Monolithic Model

- $G = \langle Q, \Sigma, \delta, q_0 \rangle$
 - Q is the set of *states*
 - Σ is the *alphabet* containing the events
 - $\delta{:}Q\,\times\,\Sigma\,\rightarrow\,Q$ is the partial transition function
 - $\bullet \ q_0 \in Q$ is the initial state of the system

Modular Model

 $\mathsf{G} = \mathsf{G}_1 ||\mathsf{G}_2|| \ldots || \ \mathsf{G}_n$

Machine Buffer Machine

System Behavior

 $\Sigma = \{ \textit{load1}, \textit{load2}, \textit{unload1}, \textit{unload2} \}$

(Chalmers University of Technology)

To learn a model we require:

- Knowledge about the events.
- Possibility to interact and observe the internal state of the system.

(Chalmers University of Technology)

WODES 2020 7 / 26

WODES 2020 7 / 26

WODES 2020 7 / 26

(Chalmers University of Technology)

WODES 2020 7 / 26

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

WODES 2020 7 / 26

WODES 2020 7 / 26

イロト イヨト イヨト イヨト

Can we instead learn smaller modules that together make up the complete system?

-

イロト イヨト イヨト イ

Introduction

2 Modular learning

B Learning a modular plant

4 Limitations

6 Conclusions

(Chalmers University of Technology)

イロト イヨト イヨト イヨ

- Our work aims to alleviate the state-space explosion problem by exploring a smaller state-space rather than the monolithic one.
- This is done by exploiting the structural knowledge of the system.

ヘロト ヘヨト ヘヨト

We assume an interface to a simulation or the actual production code(in case of software) of the target. More importantly, it should be possible to interface with the system and

- run the discrete system by calling it externally.
- access to the set of state variables.
- be able to read and write these state variables.

MBM Example

- State variables = {varB, $varM_1$, $varM_2$ }
- Domain for the machines {*idle*, *working*};
- Domain for the buffer {*empty*, *full*}
- State: <full,idle1,idle2>

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Provides structural information about the system and how the modules should be constructed.

PSH

Formally, the PSH is a 3-tuple $H = \langle M, E, S \rangle$, where:

- *M* is a set of identifiers for the modules;
- $E: M \to 2^{\Sigma}$ is the event mapping;
- $S: M \to 2^V$ is the state mapping;

Example

- $M = \{M_1, M_2, Buffer\}$
- $E(M_1) = \{load_1, unload_1\}$
- $E(M_2) = \{load_2, unload_2\}$
- $E(B) = \{unload_1, load_2\}$
- $S(M_1) = \{varM_1\}$
- $S(M_2) = \{varM_2, varB\}$
- $S(B) = \{varB\}$

イロト イヨト イヨト イ

- State is a unique valuation of state variables.
- Unique valuation of a subset of the state variables gives a projected state.

Projected States

• Global State: s = <full,idle1,idle2>;

•
$$P_{varB}(s) = \langle full \rangle$$

1 Introduction

2 Modular learning

3 Learning a modular plant

4 Limitations

Conclusions

(Chalmers University of Technology)

イロト イヨト イヨト イヨ

Learning a modular plant – Initial state

$E(M_1) = \{load_1, unload_1\}$	$S(M_1) = \{ varM_1 \}$
$E(M_2) = \{ load_2, unload_2 \}$	$S(M_2) = \{\mathit{var}M_2, \mathit{var}B$
$E(B) = {unload_1, load_2}$	$S(B) = \{varB\}$

Example (Simulation)

・ロト ・日・ ・日

 $S(B) = \{varB\}$

 $E(B) = \{unload_1, load_2\}$

Example (Simulation)

(Chalmers University of Technology)

Example (Simulation)

(Chalmers University of Technology)

WODES 2020 19 / 26

Example (Simulation)

(Chalmers University of Technology)

Learning a modular plant – Termination

Example (Simulation)

(Chalmers University of Technology)

WODES 2020 21 / 26

Introduction

2 Modular learning

Icarning a modular plant

4 Limitations

5 Conclusions

イロト イヨト イヨト イヨ

To be able to learn the system modularly we are limited by:

- A deterministic system.
- Knowledge about the events and state variables.
- The discrete simulation of the system. With the possibility to set the state variables in the simulation, execute events, and observe the updated state variables.
- Definition of Plant Structure Hypothesis (PSH).
- Decomposable system as defined by the PSH.

Introduction

2 Modular learning

3 Learning a modular plant

4 Limitations

5 Conclusions

(Chalmers University of Technology)

イロト イヨト イヨト イヨ

- It was possible to learn a modular plant of a system given its simulation.
- Successfully applied this algorithm to learn a model of a sub-component in an autonomous car¹.
- The accuracy and performance of this method depends upon the defined PSH.
- Given specifications can we directly learn a modular supervisor?

 ¹Yuvaraj Selvaraj et al. "Automatically Learning Formal Models: An Industrial Case from Autonomous Driving Development". In: Proceedings of the 23rd

 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS '20. Virtual Event, Canada:

 Association for Computing Machinery, 2020. ISBN: 9781450381352.

Thank You!

イロト イロト イヨト イヨト