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Introduction
Background

• Industrial PhD project
• Formal verification for Autonomous Driving (AD) software development
• Collaboration between Zenseact and Chalmers University of Technology

• Zenseact1

• Software company for AD and Advanced Driver Assistance Systems (ADAS)
• Offices in Sweden and China
• Robustness and safety are top priorities

1formerly known as Zenuity



Introduction
Motivation

• Formal verification needs a model of the system

• Experience2 shows manual model construction is an obstacle

Manual model construction

• Potentially error prone

• Intractable for large systems

2Yuvaraj Selvaraj, Wolfgang Ahrendt, and Martin Fabian. “Verification of Decision Making Software in an Autonomous Vehicle: An Industrial
Case Study”. In: Formal Methods for Industrial Critical Systems. LNCS 11687. Springer, 2019.



Research Question

Research Question

How can we address the challenge of manual model construction?

Approach

• Learn an automata model of the existing program code

• Active automata learning to automatically obtain formal models
• Two learning algorithms are evaluated:

• L* algorithm3

• Modular Plant Learner (MPL)4

3Ashfaq Farooqui and Martin Fabian. “Synthesis of Supervisors for Unknown Plant Models Using Active Learning”. In: 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE). Vancouver, BC, Canada: IEEE, 2019, pp. 502–508.

4Ashfaq Farooqui, Fredrik Hagebring, and Martin Fabian. “Active Learning of Modular Plant Models”. In: WODES 2020.



Learning Algorithms
Modular Plant Learner

Learns a model consisting of interacting components

MPL



Learning Algorithms
L*

Learns a global regular language

L*



System Under Learning (SUL)
Lateral State Manager (LSM)
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System Under Learning (SUL)
LSM

• LSM is programmed in MATLAB

• Inputs from other sub-components are
abstracted

• Functionality to run and observe LSM by the
learner is introduced
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Learning Setup
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• The interface provides a standard API to run and observe the SUL

• Provide information to the learner to interpret the observed information



Outcomes

• L* algorithm did not terminate and hence failed to learn a complete model

• MPL manages to learn a model that was validated with good confidence

• The obtained model was simulated alongside the original code to check correctness
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Figure: A meta-level finite-state abstraction of the LSM
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Figure: Language Minimised model



Insights

• Practical challenges
• Interface between SUL and learner crucial for scaling up
• Possibility to use stand-alone libraries and/or automatic abstraction
• Trade-off between states and events

• Towards formal software development
• Proof of concept for successfully learning formal models
• Approach is independent of semantics of implementation language
• Enables the use of formal methods for continuous software development and

software reverse engineering



Future Work

• Study the application of these techniques to a diverse range of examples

• Learning richer formalism, like EFA

• Explore possibilities of incorporating this approach in day to day development



Thank you for listening!
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