Automatically Learning Formal Models:
An Industrial Case from Autonomous Driving Development

Yuvaraj Selvaraj!-? Ashfaq Farooqui 2
Ghazaleh Panahandeh ! Martin Fabian 2

1Zenseact AB

2Chalmers University of Technology

MASE'20
16 October 2020

Introduction
Background

® Industrial PhD project

® Formal verification for Autonomous Driving (AD) software development
® Collaboration between Zenseact and Chalmers University of Technology

o Zenseact!

® Software company for AD and Advanced Driver Assistance Systems (ADAS)
® Offices in Sweden and China
® Robustness and safety are top priorities

Lformerly known as Zenuity

Introduction

Motivation

® Formal verification needs a model of the system

* Experience? shows manual model construction is an obstacle

Manual model construction

® Potentially error prone

® |Intractable for large systems

2Yuvaraj Selvaraj, Wolfgang Ahrendt, and Martin Fabian. “Verification of Decision Making Software in an Autonomous Vehicle: An Industrial
Case Study”. In: Formal Methods for Industrial Critical Systems. LNCS 11687. Springer, 2019.

Research Question

Research Question

How can we address the challenge of manual model construction?

Approach

® Learn an automata model of the existing program code
® Active automata learning to automatically obtain formal models
® Two learning algorithms are evaluated:

® L* algorithm®

® Modular Plant Learner (MPL)*

3Ashfaq Farooqui and Martin Fabian. “Synthesis of Supervisors for Unknown Plant Models Using Active Learning”. In: 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE). Vancouver, BC, Canada: IEEE, 2019, pp. 502-508.

4Ashfaq Farooqui, Fredrik Hagebring, and Martin Fabian. “Active Learning of Modular Plant Models”. In: WODES 2020.

Learning Algorithms

Modular Plant Learner

Learns a model consisting of interacting components

MPL

(=)be(+)

Learning Algorithms
L*

Learns a global regular language

L*

S

System Under Learning (SUL)

Lateral State Manager (LSM)

SENSE

Vvehicle HIGH LEVEL ;
State | STRATEGIC :
g PLANNER :
Traffic (Planner) |
State '
Control

Lane Change PATH Signals |

Request PLANNER i
A4 :
A :
Vehicle LATERAL ,
State STATE Direction E
Traffic | MANAGER Turn Indication ,
State (LSM)

DECISION MAKING AND PLANNINGE

CONTROLLER

System Under Learning (SUL)

LSM

e LSM is programmed in MATLAB

® |nputs from other sub-components are
abstracted

® Functionality to run and observe LSM by the
learner is introduced

Learning Setup

(SYSTEMUNDER (LEARNER \ (FORMAL MODEL

\ MATLAB / \ SCALA)

LEARNING SETUP

—

1 1
' '
' '
1 1
: LEARNING ' ANALYSER
1 /ﬁ 1
: > > ;
' '
FINITE-STATE MODEL
' LATERAL STATE MATLAB-JAVA LEARNING M SIMULATOR
' MAESAMGER INTERFACE ALGORITHMS '
H (LSM) < ¥ H FORMAL VERIFICATION
' \) '
. ‘ FORMAL SYNTHESIS
: :
' '
1 1
' '

® The interface provides a standard APl to run and observe the SUL

® Provide information to the learner to interpret the observed information

Outcomes

e L* algorithm did not terminate and hence failed to learn a complete model
® MPL manages to learn a model that was validated with good confidence

® The obtained model was simulated alongside the original code to check correctness

Figure: A meta-level finite-state abstraction of the LSM Figure: Language Minimised model

Insights

® Practical challenges

® Interface between SUL and learner crucial for scaling up
® Possibility to use stand-alone libraries and/or automatic abstraction
® Trade-off between states and events

® Towards formal software development

® Proof of concept for successfully learning formal models

® Approach is independent of semantics of implementation language

® Enables the use of formal methods for continuous software development and
software reverse engineering

Future Work

® Study the application of these techniques to a diverse range of examples

® Learning richer formalism, like EFA
® Explore possibilities of incorporating this approach in day to day development

Thank you for listening!

	Introduction

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

