
Automatically Learning Formal Models:
An Industrial Case from Autonomous Driving Development

Yuvaraj Selvaraj1,2 Ashfaq Farooqui 2

Ghazaleh Panahandeh 1 Martin Fabian 2

1Zenseact AB

2Chalmers University of Technology

MASE’20
16 October 2020



Introduction
Background

• Industrial PhD project
• Formal verification for Autonomous Driving (AD) software development
• Collaboration between Zenseact and Chalmers University of Technology

• Zenseact1

• Software company for AD and Advanced Driver Assistance Systems (ADAS)
• Offices in Sweden and China
• Robustness and safety are top priorities

1formerly known as Zenuity



Introduction
Motivation

• Formal verification needs a model of the system

• Experience2 shows manual model construction is an obstacle

Manual model construction

• Potentially error prone

• Intractable for large systems

2Yuvaraj Selvaraj, Wolfgang Ahrendt, and Martin Fabian. “Verification of Decision Making Software in an Autonomous Vehicle: An Industrial
Case Study”. In: Formal Methods for Industrial Critical Systems. LNCS 11687. Springer, 2019.



Research Question

Research Question

How can we address the challenge of manual model construction?

Approach

• Learn an automata model of the existing program code

• Active automata learning to automatically obtain formal models
• Two learning algorithms are evaluated:

• L* algorithm3

• Modular Plant Learner (MPL)4

3Ashfaq Farooqui and Martin Fabian. “Synthesis of Supervisors for Unknown Plant Models Using Active Learning”. In: 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE). Vancouver, BC, Canada: IEEE, 2019, pp. 502–508.

4Ashfaq Farooqui, Fredrik Hagebring, and Martin Fabian. “Active Learning of Modular Plant Models”. In: WODES 2020.



Learning Algorithms
Modular Plant Learner

Learns a model consisting of interacting components

MPL



Learning Algorithms
L*

Learns a global regular language

L*



System Under Learning (SUL)
Lateral State Manager (LSM)

SENSE  PATH 
PLANNER CONTROLLER

HIGH LEVEL
STRATEGIC
PLANNER 
(Planner) 

LATERAL  
STATE 

MANAGER 
(LSM) 

DECISION MAKING AND PLANNING

Vehicle
State

Traffic
State 

Lane Change
Request 

Direction 

Turn Indication 

Control
Signals 

Vehicle
State

Traffic
State 



System Under Learning (SUL)
LSM

• LSM is programmed in MATLAB

• Inputs from other sub-components are
abstracted

• Functionality to run and observe LSM by the
learner is introduced

SA

SB SC

SD SE

SG

SF



Learning Setup

LATERAL	STATE
MANAGER

(LSM)

LEARNING
ALGORITHMS

MATLAB-JAVA
INTERFACE

SYSTEM	UNDER
LEARNING

LEARNER

SCALAMATLAB

FINITE-STATE	MODEL
SIMULATOR

FORMAL	VERIFICATION

FORMAL	SYNTHESIS

LEARNING	SETUP

FORMAL	MODEL
	ANALYSER

• The interface provides a standard API to run and observe the SUL

• Provide information to the learner to interpret the observed information



Outcomes

• L* algorithm did not terminate and hence failed to learn a complete model

• MPL manages to learn a model that was validated with good confidence

• The obtained model was simulated alongside the original code to check correctness

SA

SB SC

SD SE

SG

SF

Figure: A meta-level finite-state abstraction of the LSM

q4

q2

q5q0

q6

q3

leftb9
leftb8b9
leftb8b5b9
leftb8b5
leftb8
leftb5b9
leftb5
leftb4b9
leftb4b8b9
leftb4b8
leftb4
left
b9right
b8right
b8b9right
b8b5right
b8b5b9right
b5right
b5b9right
b4right
b4b9right
b4b8right
b4b8b9right

b9none

leftb6

none

leftb5b6

b8none
b8b9none
b8b5none
b8b5b9none
b5none
b5b9none

b10b12right

b4b9none
b4b8none
b4b8b9none
b4b8b5none
b4b8b5b9none
b4b5none

b10none

b10b11right

leftb4

b10leftb12

left

b12none

none
leftb4
left
b7right
b7none
b7left
b4right
b4none

b11b12right

right

leftb11b12
leftb12

b12right

b10left

b6right
b5b6right

none
leftb11

right
leftb5

left

b10b11none

b10b12none

b11none

b4right
b4b6right

b4none

leftb4b6

b10b11b12none

b10leftb11

b11right

b5right

b4b5b9right

b4b8b5right
leftb4b5

b11b12none

b10leftb11b12

b4b5b9none

b10b11b12right

right

b4b5right

leftb4b8b5

b10right

right

leftb4b5b9

Figure: Language Minimised model



Insights

• Practical challenges
• Interface between SUL and learner crucial for scaling up
• Possibility to use stand-alone libraries and/or automatic abstraction
• Trade-off between states and events

• Towards formal software development
• Proof of concept for successfully learning formal models
• Approach is independent of semantics of implementation language
• Enables the use of formal methods for continuous software development and

software reverse engineering



Future Work

• Study the application of these techniques to a diverse range of examples

• Learning richer formalism, like EFA

• Explore possibilities of incorporating this approach in day to day development



Thank you for listening!


	Introduction

	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


