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Introduction
Background

® Industrial PhD project

® Formal verification for Autonomous Driving (AD) software development
® Collaboration between Zenseact and Chalmers University of Technology

o Zenseact!

® Software company for AD and Advanced Driver Assistance Systems (ADAS)
® Offices in Sweden and China
® Robustness and safety are top priorities

Lformerly known as Zenuity



Introduction

Motivation

® Formal verification needs a model of the system

* Experience? shows manual model construction is an obstacle

Manual model construction

® Potentially error prone

® |Intractable for large systems

2Yuvaraj Selvaraj, Wolfgang Ahrendt, and Martin Fabian. “Verification of Decision Making Software in an Autonomous Vehicle: An Industrial
Case Study”. In: Formal Methods for Industrial Critical Systems. LNCS 11687. Springer, 2019.



Research Question

Research Question

How can we address the challenge of manual model construction?

Approach

® Learn an automata model of the existing program code
® Active automata learning to automatically obtain formal models
® Two learning algorithms are evaluated:

® L* algorithm®

® Modular Plant Learner (MPL)*

3Ashfaq Farooqui and Martin Fabian. “Synthesis of Supervisors for Unknown Plant Models Using Active Learning”. In: 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE). Vancouver, BC, Canada: IEEE, 2019, pp. 502-508.

4Ashfaq Farooqui, Fredrik Hagebring, and Martin Fabian. “Active Learning of Modular Plant Models”. In: WODES 2020.



Learning Algorithms

Modular Plant Learner

Learns a model consisting of interacting components

MPL
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Learning Algorithms
L*

Learns a global regular language

L*
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System Under Learning (SUL)

Lateral State Manager (LSM)
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System Under Learning (SUL)

LSM

e LSM is programmed in MATLAB

® |nputs from other sub-components are
abstracted

® Functionality to run and observe LSM by the
learner is introduced



Learning Setup
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® The interface provides a standard APl to run and observe the SUL

® Provide information to the learner to interpret the observed information



Outcomes

e L* algorithm did not terminate and hence failed to learn a complete model
® MPL manages to learn a model that was validated with good confidence

® The obtained model was simulated alongside the original code to check correctness

Figure: A meta-level finite-state abstraction of the LSM Figure: Language Minimised model



Insights

® Practical challenges

® Interface between SUL and learner crucial for scaling up
® Possibility to use stand-alone libraries and/or automatic abstraction
® Trade-off between states and events

® Towards formal software development

® Proof of concept for successfully learning formal models

® Approach is independent of semantics of implementation language

® Enables the use of formal methods for continuous software development and
software reverse engineering



Future Work

® Study the application of these techniques to a diverse range of examples

® Learning richer formalism, like EFA
® Explore possibilities of incorporating this approach in day to day development



Thank you for listening!
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