Automatically Learning Formal Models: An Industrial Case from Autonomous Driving Development

> Yuvaraj Selvaraj^{1,2} Ashfaq Farooqui ² Ghazaleh Panahandeh ¹ Martin Fabian ²

> > 1 Zenseact AB

²Chalmers University of Technology

MASE'20 16 October 2020

Introduction

Background

- Industrial PhD project
 - Formal verification for Autonomous Driving (AD) software development
 - Collaboration between Zenseact and Chalmers University of Technology
- Zenseact¹
 - Software company for AD and Advanced Driver Assistance Systems (ADAS)
 - Offices in Sweden and China
 - Robustness and safety are top priorities

¹formerly known as Zenuity

Introduction

Motivation

- Formal verification needs a model of the system
- Experience² shows manual model construction is an obstacle

Manual model construction

- Potentially error prone
- Intractable for large systems

²Yuvaraj Selvaraj, Wolfgang Ahrendt, and Martin Fabian. "Verification of Decision Making Software in an Autonomous Vehicle: An Industrial Case Study". In: Formal Methods for Industrial Critical Systems. LNCS 11687. Springer, 2019.

Research Question

Research Question

How can we address the challenge of manual model construction?

Approach

- · Learn an automata model of the existing program code
- · Active automata learning to automatically obtain formal models
- Two learning algorithms are evaluated:
 - L* algorithm³
 - Modular Plant Learner (MPL)⁴

³Ashfaq Farooqui and Martin Fabian. "Synthesis of Supervisors for Unknown Plant Models Using Active Learning". In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Vancouver, BC, Canada: IEEE, 2019, pp. 502–508.

⁴Ashfaq Farooqui, Fredrik Hagebring, and Martin Fabian. "Active Learning of Modular Plant Models". In: WODES 2020.

Learning Algorithms Modular Plant Learner

Learns a model consisting of interacting components

MPL

Learning Algorithms L^*

Learns a global regular language

L*	

System Under Learning (SUL) Lateral State Manager (LSM)

System Under Learning (SUL)

- LSM is programmed in MATLAB
- Inputs from other sub-components are abstracted
- Functionality to run and observe LSM by the learner is introduced

Learning Setup

- The interface provides a standard API to run and observe the SUL
- Provide information to the learner to interpret the observed information

Outcomes

- L* algorithm did not terminate and hence failed to learn a complete model
- MPL manages to learn a model that was validated with good confidence
- The obtained model was simulated alongside the original code to check correctness

Figure: A meta-level finite-state abstraction of the LSM

Figure: Language Minimised model

Insights

- Practical challenges
 - Interface between SUL and learner crucial for scaling up
 - Possibility to use stand-alone libraries and/or automatic abstraction
 - Trade-off between states and events
- Towards formal software development
 - Proof of concept for successfully learning formal models
 - Approach is independent of semantics of implementation language
 - Enables the use of formal methods for continuous software development and software reverse engineering

Future Work

- Study the application of these techniques to a diverse range of examples
- Learning richer formalism, like EFA
- Explore possibilities of incorporating this approach in day to day development

Thank you for listening!