On Supervisor Synthesis via Automata Learning


Our society’s reliance on computer-controlled systems is rapidly growing. Such systems are found in various devices, ranging from simple light switches to safety-critical systems like autonomous vehicles. In the context of safety-critical systems, safety and correctness are of utmost importance. Faults and errors could have catastrophic consequences. Thus, there is a need for rigorous methodologies that help provide guarantees of safety and correctness. Supervisor synthesis, the concept of being able to mathematically synthesize a supervisor that ensures that the closed-loop system behaves in accordance with known requirements, can indeed help. This thesis introduces supervisor learning, an approach to help automate the learning of supervisors in the absence of plant models. Traditionally, supervisor synthesis makes use of plant models and specification models to obtain a supervisor. Industrial adoption of this method is limited due to, among other things, the difficulty in obtaining usable plant models. Manually creating these plant models is an error-prone and time-consuming process. Thus, supervisor learning intends to improve the industrial adoption of supervisory control by automating the process of generating supervisors in the absence of plant models. The idea here is to learn a supervisor for the system under learning (SUL) by active interaction and experimentation. To this end, we present two algorithms, SupL^* , and MSL, that directly learn supervisors when provided with a simulator of the SUL and its corresponding specifications. SupL^* is a language-based learner that learns one supervisor for the entire system. MSL, on the other hand, learns a modular supervisor, that is, several smaller supervisors, one for each specification. Additionally, a third algorithm, MPL, is introduced for learning a modular plant model. The approach is realized in the tool MIDES and has been used to learn supervisors in a virtual manufacturing setting for the Machine Buffer Machine example, as well as learning a model of the Lateral State Manager, a sub-component of a self-driving car. These case studies show the feasibility and applicability of the proposed approach, in addition to helping identify future directions for research.