

An introduction to ROS, The Robot Operating System

Seminar 150505, Department of Signals and Systems

Ashfaq Farooqui ashfaqf@student.chalmers.se Martin Viktorsson viktorss@student.chalmers.se

552

- Overview of ROS
- Basic ROS concepts and its capabilities
- How we are using ROS, and why?

Biography

- Ashfaq Farooqui
 - Systems Control & Mechatronics, Chalmers
 - Chalmers Formula Student 2014
 - B.Sc. Electronics and communication engineering, BMS Institute of Technology, India
- Martin Viktorsson
 - Systems Control & Mechatronics, Chalmers
 - Exchange studies at TU München, Germany
 - B.Sc Automation & Mechatronics, Chalmers

Motivation for ROS

- Distributed systems

 Internet of Things (IoT)
- Modularity
 - Independent development of different applications
- ROS in research
 - No invention of the wheel again
 - Re-usability of modules and tools for debugging and visualization
 - Test on both hardware and simulator with minimal code changes.

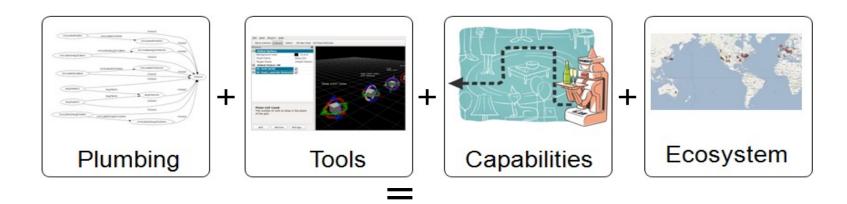
ROS- Background

- STAIR Stanford AI Robot
 - ~2005, In house prototypes of robots and systems
- Willow Garage Founder of ROS
 - 2007, Personal Robotics project, iterations of framework design with Stanford
 - 2009, ROS 0.4 and PR2 Alpha
 - 2010, 11 PR2's delivered to industry and Universities.
 - 2013, ROS moves to Open Source Robotics Foundation

PR2

Source:http://www.flickr.com/photos/sixteenmilesofstring/5749414416/in/photostream/

• \$280 000 (with 30% Open Source discount)



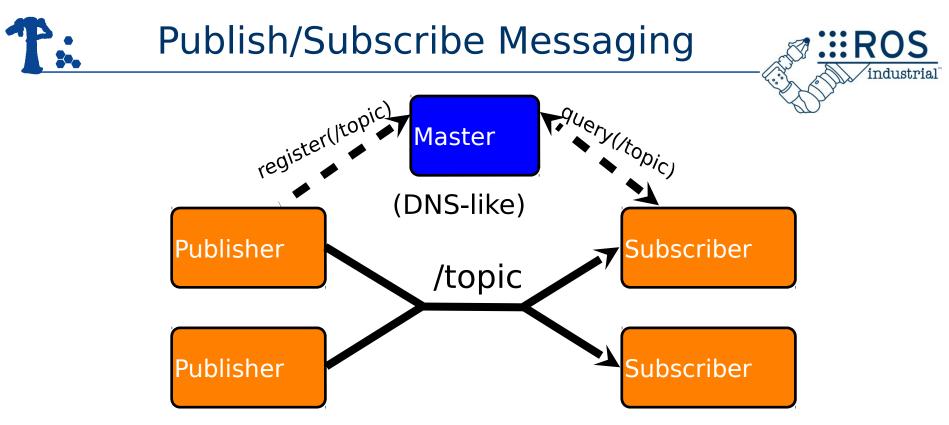
III ROS

industrial"

T: ROS: Robot Operating System

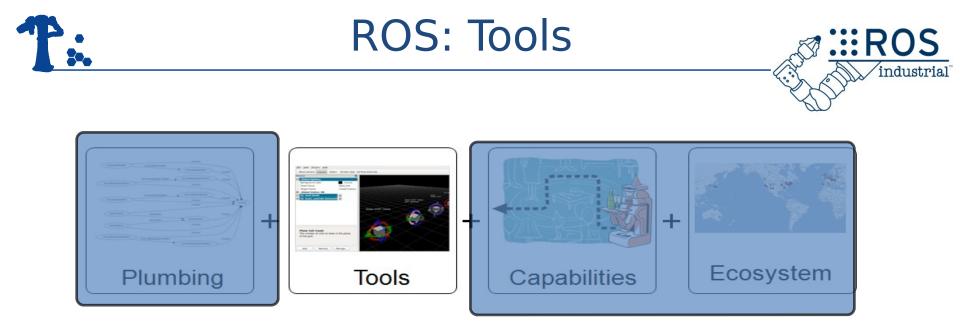
Ø ∷ROS

industrial



ROS provides publish-subscribe messaging infrastructure designed to support the quick and easy construction of distributed computing systems.

552

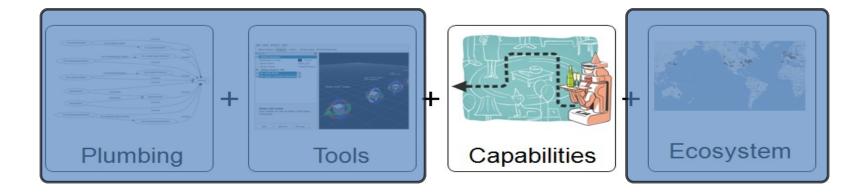

- Messages
- Topics
- Services
- Actions
- Parameters
- Nodes
- Roscore

- Simplifies complex programming
- Dynamic architectures allows reuse

ROS provides an extensive set of tools for configuring, starting, introspecting, debugging, visualizing, logging, testing, and stopping distributed computing systems.

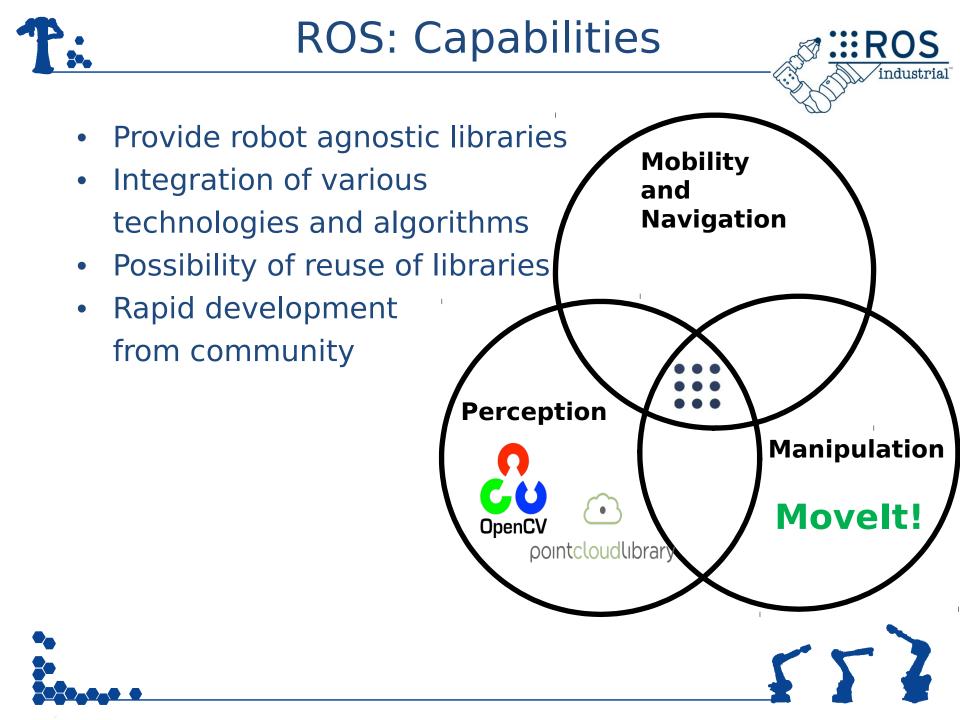
ROS: Tools

- Commandline ROS tools
 - Running the ROS systems
 - Rosrun
 - Roslaunch
 - Roscore
 - Interfacing and debugging running systems
 - Rosservice
 - Rostopic
 - Rosparam
 - Rosnode...
 - Install and build tools
 - catkin_make
 - Rosbuild
 - Roscd...



- Rviz
- Gazebo
- Data Visualization tools
 - rqt_graph
 - rqt_plot
 - Rosbag: rqt_bag....
- Development tools
 - Standard linux tools
 - Boost,cpp,python,lisp, XMLRPC
 - GUI tools....

ROS: Capabilities

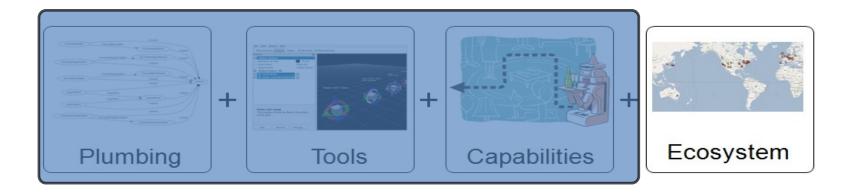


ROS provides a broad collection of libraries that implement useful robot functionality, with a focus on mobility, manipulation, and perception.



ROS: Capabilities

Video



ROS: Ecosystem

552

ROS is supported and improved by a large community, with a strong focus on integration and documentation. "ros.org" is a one-stop-shop for finding and learning about the thousands of ROS packages that are available from developers around the world.

ROS-Industrial

55.

- Motivated by desire to solve hard problems encountered in industrial robotics and automation
- Driven by actual application needs (i.e. real life problems without commercial solutions)
 - Dynamic pick and place
 - Flexible automation (many small & diverse part runs)
 - Sensor driven automation
- Reduction in integration cost by standardizing interfaces and enabling reuse

Industrial Robotics

- Limited by platform specific tools
 - Company provided hardware/software tools
 - Robot specific capabilities
 - Small user base
- Slow technology adoption
- Barriers to transition basic research
- Does not support independent developers

ROS-Industrial solves these

ROS-I: Supported Hardware

- Robots:
 - Universal Robot

industrial

- Kuka
- FANUC
- ABB
- Motoman
- Adept
- More to come....
- External Interfaces
 - SICK Sensors
 - Robotiq grippers

52

- EtherCAT
- USB
- Ethernet

- Guided by PR2 use-case
 - Single Robot design
 - Workstation class computation capabilities
 - Assumes Excellent network connectivity
- Not realtime
- Non-deterministic TCP protocol
- No Safety Standards compliance

ROS 2.0

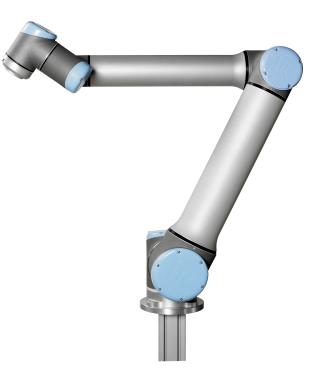
Aims:

- Teams of multiple robots
- Be inclusive of small embedded platforms
- Inherently be a Real-time system
- Proscribed patterns for development
- Use of new technologies
 - DDS(Data distribution service)
 - Websockets
 - Protobuf
 - ZeroMQ-Serializer & Deserializer
- Provide middleware API interface for agnostic DDS
- UI based code generators

Our Implementation

Two theses, One Project!

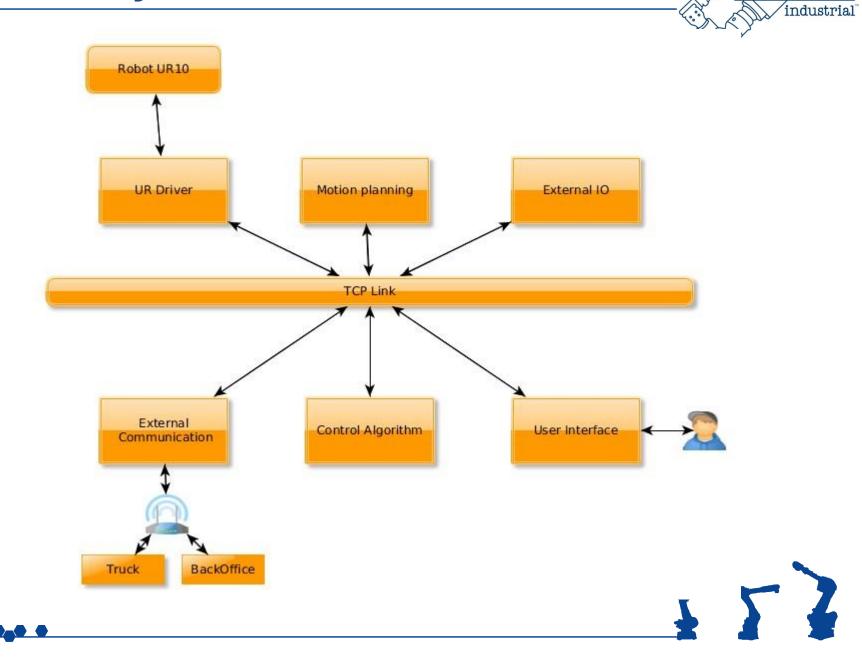
- Robot applications
 - Anton Olsson & Jonas Gustavsson
 - BSc Mechatronics, Chalmers (15ECTS)
- System configuration
 - Ashfaq Farooqui & Martin Viktorsson
 - MSc MPSYS, Chalmers (30ECTS)
- S2 Available theses, "Interfacing a Service Robot"



Universal Robot UR10

- Universal Robots UR10

 Collaborative
 - Certified by TÜV
 - 10kg load
 - UR3, UR5



System Architecture

ROS

- ReApp
 - Financed by German authorities
 - Enabling technique in a cheap way for small and mid size companies
 - ROSi-libraries with standard operations
 - Plug & Produce
- FP7
 - Factory-in-a-day
 - SME-robotics
 - LIAA Lean Intelligent Assembly Automation

ROS (-I) Today

BMW Autonomous driving

Development of ROS

- ROSi Consortium
 - South West Research institute (SwRI)
 - Fraunhofer IPA Stuttgart
- OEM
 - UR supports with wiki
 - ABB's ROS responsible is involved in Volvo projects and Robotdalen.
- Universities, Companies, Users etc.



Video

Questions?

Content borrowed from: Wiki.ros.org Rosindustial.org

