Research Questions	Automated Manufacturing Systems	Digitalization	Learning Formal models	Wrapping up

Towards Automatic Generation of Formal Models for Highly Automated Manufacturing Systems

Ashfaq Farooqui

Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden

27-08-2018

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up
Outline			

- 2 Automated Manufacturing Systems
- 3 Digitalization
- 4 Learning Formal models
 - Background
 - Automata Learning
 - Active Learning Applied to a Simulated Robotic Arm
 - Integrating Active and Passive Learning

5 Wrapping up

- Summary of Contributions
- Future Work

Research Questions ●○	Automated Manufacturing Systems		
Topic			

- 2 Automated Manufacturing Systems
- 3 Digitalization
- 4 Learning Formal models
 - Background
 - Automata Learning
 - Active Learning Applied to a Simulated Robotic Arm
 - Integrating Active and Passive Learning

5 Wrapping up

- Summary of Contributions
- Future Work

Research Questions ○●	Automated Manufacturing Systems	Learning Formal models	
Research Q	uestions		

• RQ1 How does the manufacturing industry generally handle errors and perform maintenance? And what are the challenges faced?

• RQ2 How can operators be supported with tools and processes that will make it possible to make more data driven decisions?

• RQ3 Is it feasible to automatically learn formal models of manufacturing and systems? If so, what would be required to make it a reality?

Research Questions	Automated Manufacturing Systems •0000		
Topic			

2 Automated Manufacturing Systems

- 3 Digitalization
- 4 Learning Formal models
 - Background
 - Automata Learning
 - Active Learning Applied to a Simulated Robotic Arm
 - Integrating Active and Passive Learning

5 Wrapping up

- Summary of Contributions
- Future Work

Automated Manufacturing Systems 00000

Digitalization Learn

Learning Formal models

Wrapping up

Automated Manufacturing Systems

Integration of software and machinery that perform manufacturing processes autonomously.

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up
A			

Automated Manufacturing Systems

- Complexity of manufacturing systems is increasing
- Writing correct software to control the systems is difficult
- Once operational, it is difficult to evaluate the stations to ensure there are no deviations from expected behavior
- Tools to evaluate the performance of manufacturing systems are scarce

Research Questions	Automated Manufacturing Systems	Learning Formal models	
Survey			

To get a better idea about the problems faced by the operators, we conducted a survey involving NEVS, Scania, GKN Aerospace, and Volvo. The issues discussed were:

- Knowledge transfer between operators
- Lack of training and support for operators on the actual station

- Software bugs after commissioning, hot fixes usually end up introducing more bugs
- Restart after a power outage or emergency stop

Research Questions	Automated Manufacturing Systems	Digitalization	Learning Formal models	Wrapping up
	00000			

Survey

Digitalization

- Knowledge transfer between operators
- Lack of training and support for operators on the actual station

Application of Formal Methods

- Software bugs after commissioning, hot fixes usually end up introducing more bugs
- Restart after a power outage or emergency stop

Research Questions	Automated Manufacturing Systems	0	Learning Formal models	Wrapping up
Topic				

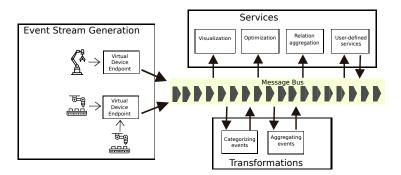
2 Automated Manufacturing Systems

3 Digitalization

- Learning Formal models
 - Background
 - Automata Learning
 - Active Learning Applied to a Simulated Robotic Arm
 - Integrating Active and Passive Learning

5 Wrapping up

- Summary of Contributions
- Future Work


Automated Manufacturing Systems

Digitalization Lo

tion Learning Formal models

Wrapping up

Connecting to the Factory Floor

Architecture

- Event Driven Architecture
- Easy to add and remove devices
- Support for new and legacy systems

Automated Manufacturing Systems		Wrapping up

Virtual Device

Robot actions are converted to event streams by the Virtual Device

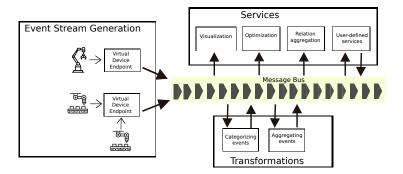
- Provides the integration layer
- Captures and publishes device data onto the message bus

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのの

• Header defines resource name, location and time

Event Message

(resource, location, timestamp, data)


Automated Manufacturing Systems

Digitalization

Learning Formal models

Wrapping up

Connecting to the Factory Floor

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへで

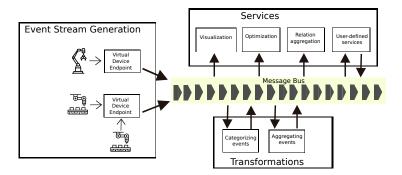
	Automated Manufacturing Systems		Wrapping up
т с	. •		

Transformations

Events are then transformed by a series of transformation endpoints into an usable abstraction.

Robot operation

(Name, Starttime, Endtime, Resource, Operationtype)


Automated Manufacturing Systems

Digitalization

ation Learning Formal models

Wrapping up

Connecting to the Factory Floor

Research Questions	Automated Manufacturing Systems		Wrapping up
<u> </u>			

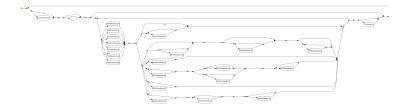

Services

Services continuously perform computations on events based on user requirements.

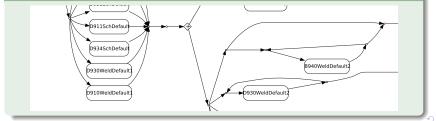
- Calculation of performance indicators
 - Cycle times, wait times
 - Resource Utilization
- Process Visualizations
- Prediction Services
- Simulation of a Digital Twin

00 00000 0000000000 00000000 0000000 0000	Research Questions	Automated Manufacturing Systems	Digitalization	Learning Formal models	Wrapping up
			0000000000000		

Gantt Visualization



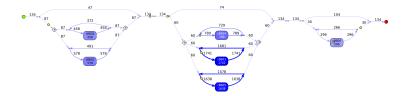
Automated Manufacturing Systems


Digitalization Learning Formal models

Wrapping up

Behavioral Visualization

A closer look



Automated Manufacturing Systems

Digitalization Learning Formal models

Wrapping up

Resource Visualization

Research Questions	Automated Manufacturing Systems	0	Learning Formal models	Wrapping up
Video				

Visualization

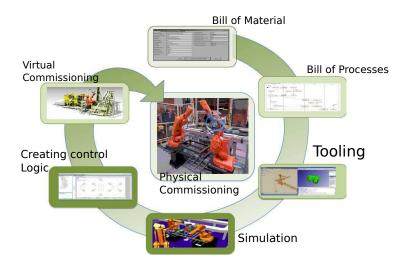
Research Questions	Automated Manufacturing Systems	Learning Formal models ●०००००००००००	
Topic			

- 1 Research Questions
- 2 Automated Manufacturing Systems
 - 3 Digitalization
- 4 Learning Formal models
 - Background
 - Automata Learning
 - Active Learning Applied to a Simulated Robotic Arm

• Integrating Active and Passive Learning

5 Wrapping up

- Summary of Contributions
- Future Work

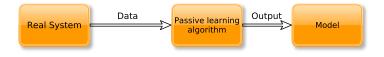

Automated Manufacturing Systems

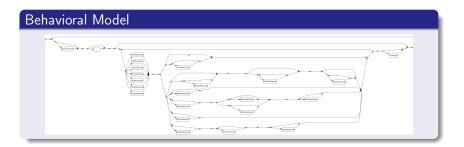
Digitalization Le

Learning Formal models

Wrapping up

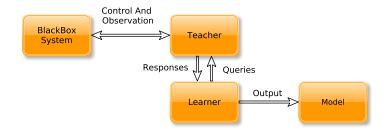
Virtual Preparation and Commissioning in a nutshell


Research Questions	Automated Manufacturing Systems	Learning Formal models ○0●○○○○○○○○	Wrapping up
Formal Me	thods		


- Mathematical techniques for specification and verification of systems
- Formal Models: Less ambiguous way to define the behavior of the system
- Verification: Checks if the model satisfies the specifications
- Synthesis: Calculate a controller that satisfies the specifications
- Challenges: Hard to model physical systems error prone process when done manually

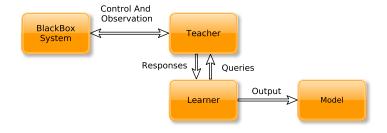
Is there then a possibility to automate the calculation of a formal model?

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up


Passive Learning

	Automated Manufacturing Systems	0	Wrapping up
A I			

Active Learning


The L^{*} Algorithm

Learning regular sets from queries and counterexamples. Dana Angluin. Information and Computation, 1987

- Famously called L*
- L^* makes it possible to learn deterministic automata

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up

Active Learning

Learner Queries

- Membership queries $w \in L_m$?
- Equivalence queries $\mathcal{L}(H) = L$?

Research Questions	Automated Manufacturing Systems	Digitalization	Learning Formal models	Wrapping up
			000000000000	

Configuration

Operations:

O (PreGuard, PreActions, PostGuard, PostActions)

Goal

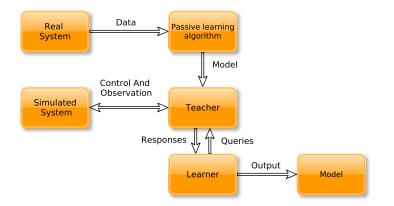
A predicate over the sensor values to define the marked states

Operation Grip Example

PreGuard : (extended== true && gripping == false) PreAction : gripper := true PostGuard : gripping == true PostAction: -


-

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up
The Interfa	ICA		


- Membership queries (Mq) were obtained by running sequences in the simulator
- Equivalence queries (Eq) were obtained using random walks on the hypothesis

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up
Outcomes			

- It was possible to learn a model of the simulated target system
- The system could not easily scale up
- Bottlenecks:
 - Finding counter examples is not always effective in large systems
 - Internal data structure used for L^{*} is not very efficient for large systems

Research Questions	Automated Manufacturing Systems	Learning Formal models ○○○○○○○○●○○	Wrapping up
The L^+			

Research Questions	Automated Manufacturing Systems	0	Wrapping up

Results

			L^+			L*	
grid	states	obs	Eq	Mq	Time(s)	Eq	Мq
2x2	17	30	3	5800	420	5	2980
3x3	37	30	4	12800	2530	8	17600
4 <i>x</i> 4	65	45	7	38400	4290	9	55230
5x5	101	34	8	59800	6400	10	102780

Research Questions	Automated Manufacturing Systems	Learning Formal models ○○○○○○○○○○	
Outcomes			

- Improved performance over the traditional \boldsymbol{L}^{*}
- Scales better, but still not sufficient for large systems
- Highly dependent on the diversity of logged sequences

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up ●000000
Topic			

- 2 Automated Manufacturing Systems
- 3 Digitalization
- 4 Learning Formal models
 - Background
 - Automata Learning
 - Active Learning Applied to a Simulated Robotic Arm
 - Integrating Active and Passive Learning

5 Wrapping up

- Summary of Contributions
- Future Work

	Automated Manufacturing Systems	Learning Formal models	
Municipa			

- A more integrated workflow to developing and maintaining manufacturing systems
- Reusable components playing a central role in development

- Auto-generation of correct and safe code based on requirements
- Visual aid to detect problems
- Virtual Commissioning, Physical Commissioning, and day-to-day maintenance are tightly coupled

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up ○○●○○○○
RO 1			

How does the manufacturing industry generally handle errors and perform maintenance? And what are the challenges faced?

• Survey of errors and error handling techniques in the industry

Paper 1:

Ashfaq Farooqui, Patrik Bergagård, Petter Falkman, and Martin Fabian. Error Handling Within Highly Automated Automotive Industry: Current Practice and Research Needs. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), 2016, Berlin, Germany.

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up ○○○●○○○
RQ 2			

How can operators be supported with tools and processes that will make it possible to make more data driven decisions?

- Architecture to digitalize and capture data from the factory floor was presented
- Captured data was visualized in different ways to help operators

Paper 2:

Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian. From Factory Floor to

Process Models: A Data Gathering Approach to Generate, Transform, and Visualize Manufacturing

Processes. Submitted for possible journal publication. 2018

Paper 4:

Ashfaq Farooqui, Kristofer Bengtsson, Petter Falkman, and Martin Fabian. Real-time Visualization of

Robot Operation Sequences. 2018 IFAC Symposium on Information Control Problems in Manufacturing

(INCOM), 2018, Bergamo, Italy.

Research Questions	Automated Manufacturing Systems	Learning Formal models	Wrapping up ○○○○●○○
RQ3			

Is it feasible to automatically learn formal models of manufacturing and systems? If so, what would be required to make it a reality?

- Active and Passive model learning techniques were studied
- A proof of concept study was done to evaluate L* on manufacturing systems
- L⁺ was presented by integrating active and passive modes of learning

Paper 3:

Ashfaq Farooqui, Petter Falkman, and Martin Fabian. Towards Automatic Learning of Discrete-Event

Models using Queries and Observations. Submitted for possible journal publication, 2018

Paper 5:

Ashfaq Farooqui, Petter Falkman, and Martin Fabian. Towards Automatic Learning of Discrete-Event

Models from Simulations. 14th IEEE Conference on Automation Science and Engineering (CASE),

2018, Munich, Germany.

Research Questions	Automated Manufacturing Systems		Wrapping up ○○○○○●○
D:			

Directions for Future Work

- Virtual Device for PLC like devices
- Improved data structures for active learning
- Learn richer formalism's Extended Finite Automata
- Incorporating restart during the learning process
- Apply active learning on real world practical systems

Research QuestionsAutomated Manufacturing SystemsDigitalizationLearning Formal modelsWrapping up000

Thank You!